Fitting Sentence Level Translation Evaluation with Many Dense Features

نویسندگان

  • Milos Stanojevic
  • Khalil Sima'an
چکیده

Sentence level evaluation in MT has turned out far more difficult than corpus level evaluation. Existing sentence level metrics employ a limited set of features, most of which are rather sparse at the sentence level, and their intricate models are rarely trained for ranking. This paper presents a simple linear model exploiting 33 relatively dense features, some of which are novel while others are known but seldom used, and train it under the learning-to-rank framework. We evaluate our metric on the standard WMT12 data showing that it outperforms the strong baseline METEOR. We also analyze the contribution of individual features and the choice of training data, language-pair vs. target-language data, providing new insights into this task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Literary Machine Translation: The Role of Referential Cohesion

What is the role of textual features above the sentence level in advancing the machine translation of literature? This paper examines how referential cohesion is expressed in literary and non-literary texts and how this cohesion affects translation. We first show in a corpus study on English that literary texts use more dense reference chains to express greater referential cohesion than news. W...

متن کامل

Regression and Ranking based Optimisation for Sentence Level Machine Translation Evaluation

Automatic evaluation metrics are fundamentally important for Machine Translation, allowing comparison of systems performance and efficient training. Current evaluation metrics fall into two classes: heuristic approaches, like BLEU, and those using supervised learning trained on human judgement data. While many trained metrics provide a better match against human judgements, this comes at the co...

متن کامل

Regression and Ranking based Optimisation for Sentence Level MT Evaluation

Automatic evaluation metrics are fundamentally important for Machine Translation, allowing comparison of systems performance and efficient training. Current evaluation metrics fall into two classes: heuristic approaches, like BLEU, and those using supervised learning trained on human judgement data. While many trained metrics provide a better match against human judgements, this comes at the co...

متن کامل

Using Machine Translation Evaluation Techniques to Determine Sentence-level Semantic Equivalence

The task of machine translation (MT) evaluation is closely related to the task of sentence-level semantic equivalence classification. This paper investigates the utility of applying standard MT evaluation methods (BLEU, NIST, WER and PER) to building classifiers to predict semantic equivalence and entailment. We also introduce a novel classification method based on PER which leverages part of s...

متن کامل

Regression for Sentence-Level MT Evaluation with Pseudo References

Many automatic evaluation metrics for machine translation (MT) rely on making comparisons to human translations, a resource that may not always be available. We present a method for developing sentence-level MT evaluation metrics that do not directly rely on human reference translations. Our metrics are developed using regression learning and are based on a set of weaker indicators of fluency a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014